Configurational entropy elucidates the role of salt-bridge networks in protein thermostability.

نویسندگان

  • John H Missimer
  • Michel O Steinmetz
  • Riccardo Baron
  • Fritz K Winkler
  • Richard A Kammerer
  • Xavier Daura
  • Wilfred F van Gunsteren
چکیده

Detailed knowledge of how networks of surface salt bridges contribute to protein thermal stability is essential not only to understand protein structure and function but also to design thermostable proteins for industrial applications. Experimental studies investigating thermodynamic stability through measurements of free energy associated with mutational alterations in proteins provide only macroscopic evidence regarding the structure of salt-bridge networks and assessment of their contribution to protein stability. Using explicit-solvent molecular dynamics simulations to provide insight on the atomic scale, we investigate here the structural stability, defined in terms of root-mean-square fluctuations, of a short polypeptide designed to fold into a stable trimeric coiled coil with a well-packed hydrophobic core and an optimal number of intra- and interhelical surface salt bridges. We find that the increase of configurational entropy of the backbone and side-chain atoms and decreased pair correlations of these with increased temperature are consistent with nearly constant atom-positional root-mean-square fluctuations, increased salt-bridge occupancies, and stronger electrostatic interactions in the coiled coil. Thus, our study of the coiled coil suggests a mechanism in which well-designed salt-bridge networks could accommodate stochastically the disorder of increased thermal motion to produce thermostability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilizing Salt-Bridge Enhances Protein Thermostability by Reducing the Heat Capacity Change of Unfolding

Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the ...

متن کامل

Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge.

Cyclodextrin glycosyltransferase (CGTase) catalyzes the formation of cyclodextrins from starch. Among the CGTases with known three-dimensional structure, Thermoanaerobacterium thermosulfurigenes CGTase has the highest thermostability. By replacing amino acid residues in the B-domain of Bacillus circulans CGTase with those from T. thermosulfurigenes CGTase, we identified a B. circulans CGTase mu...

متن کامل

Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions.

There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the mo...

متن کامل

Comparison of Hubs in Effective Normal and Tumor Protein Interaction Networks

ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...

متن کامل

Role of Key Salt Bridges in Thermostability of G. thermodenitrificans EstGtA2: Distinctive Patterns within the New Bacterial Lipolytic Enzyme Family XV

Bacterial lipolytic enzymes were originally classified into eight different families defined by Arpigny and Jaeger (families I-VIII). Recently, the discovery of new lipolytic enzymes allowed for extending the original classification to fourteen families (I-XIV). We previously reported that G. thermodenitrificans EstGtA2 (access no. AEN92268) belonged to a novel group of bacterial lipolytic enzy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2007